Code: EC3T1

II B. Tech - I Semester - Regular Examinations - January 2014

ENGINEERING MATHEMATICS - III (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Find a real root of the equation $x^3 x 1 = 0$ by using bisection method? 7 M
 - b) Write the iterative formula to find $\sqrt[k]{N}$ and hence evaluate $(30)^{-1/5}$.
- 2 a) Use Gauss's forward formula to evaluate y_{30} , given that $y_{21} = 18.4708$, $y_{25} = 17.8144$, $y_{29} = 17.1070$, $y_{33} = 16.3432$ and $y_{37} = 15.5154$.
 - b) Use Lagrange's interpolation formula to find the value of y when x=10, for the following table 7 M

X	5	6	9	11
y	12	13	14	16

3 a) Given that

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031	
				x=1.6	<u> </u>			

- b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 1/3 rule taking h=1/4.
- 4 a) Employ Taylor's method to obtain approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0.
 - b) Find y(0.2) using Runge-Kutta 4th order formula from $\frac{dy}{dx} = x^2 y$ and y(0) = 1.
- 5 a) Find the analytic function z = u + iv, if $u - v = \frac{(x-y)}{(x^2+4xy+y^2)}$.
 - b) S.T. the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof.
- 6 a) Evaluate $\int_{1-i}^{2+3i} (z^2 + z) dz$ along the line joining points (1,-1) and (2,3)

- b) Evaluate $\int_c \frac{\sin^2 z}{\left(z \frac{\pi}{6}\right)^3} dz$, where c is the circle |z| = 1. 4 M
- c) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region 1 < |z| < 2.4 M
- 7 a) Find the nature and location of singularity of the function $f(z) = (z + 1) \sin(\frac{1}{z-2})$.
 - b) Apply calculus of residues to prove that $\int_0^{2\pi} \frac{d\theta}{1-2\nu\sin\theta+\nu^2} = \frac{2\pi}{1-\nu^2} (0 7 M$
- 8 a) Find the r transformation which maps the points -1,i,1 of the z-plane into 1,i,-1 of the w-plane. 7 M
 - b) Find the image of an infinite strip bounded by x = 0 and $x = \frac{\pi}{4}$ under the transformation w = cosz. 7 M